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In this paper after reviewing the Schouten and de Rham definition of impair and pair differential form fields
(not to be confused with differential form fields of even and odd grades) we prove that in a relativistic
spacetime it is possible (despite claims in contrary) to coherently formulate electromagnetism (and we
believe any other physical theory) using only pair form fields or, if one wishes, using pair and impair
form fields together, in an appropriate way. Those two distinct descriptions involve only a mathematical
choice and do not seem to lead to any observable physical consequence if due care is taken. Moreover, we
show in details that a formulation of electromagnetic theory in the Clifford bundle formalism of differential
forms where the two Maxwell equations of the so called metric-free approach becomes a single equation is
compatible with both formulations of electromagnetism just mentioned above. In addition we derive directly
from Maxwell equation the density of force (coupling of the electromagnetic field with the charge current)
that is a postulate in the free metric approach to electromagnetism. We recall also a formulation of the
engineering version of Maxwell equations using electric and magnetic fields as objects of the same nature,
i.e., without using polar and axial vectors.

c© 2010 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim

1 Introduction

Cartan has popularized the use of differential forms which he apparently introduced in 1899 [1], and which
are now indispensable tools in several mathematical and physical theories1. What is less known among
physicists is that those objects come out in two versions, pair and impair differential forms (also called by
some authors pseudo-forms or twisted forms), a concept which has its origin in the Heaviside formulation
of electromagnetic theory in terms of polar and axial vector fields. Rigorously speaking, pair and impair
forms are sections of different bundles2, but here to motivate our presentation we may say that pair forms
living on an oriented spacetime are invariant under change of the coframe basis orientation (related to a
fixed spacetime orientation) in which they are expressed3 – in particular, pair 0-forms are scalar functions

∗ E-mail: roldao.rocha@ufabc.edu.br
∗∗ Corresponding author E-mail: walrod@ime.unicamp.br

1 In particular, it seems that Cartan applied differential forms in the formulation of electromagnetism for the first time in [2].
2 Pair forms are sections of the exterior algebra bundle ΛT ∗M and impair forms are sections the bundle Λ−T ∗M � L(M)⊗

ΛT ∗M where L(M) is a line bundle called the orientation bundle of M . Some details are given below.
3 The orientation of a given coframe basis is not to be confused with the orientation of the manifold (part of the structure defining

a spacetime) which is given by an arbitrary choice of a volume form. See below for details.
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– whereas impair forms change sign under change of the coframe basis orientation in which they are
expressed, and in particular impair 0-forms are also known as pseudoscalar functions.

A definition4 of such pair and impair differential forms has been originally introduced by de Rham [3]
(but see also [4, 5])5 and will be recalled below.

Of course, the theory of differential forms has been applied by many authors in the formulation of
different physical theories (see, e.g., [7]), and in particular in electromagnetism. However, the formulations
of that theory appearing, e.g., [8–18] make use only of pair differential forms6. It must be said that for those
authors, the arena where charged particles and the electromagnetic field interact is a Lorentzian spacetime,
that as well known is an oriented manifold7. On the other side authors like, e.g., [19–33] explicitly claim
that impair forms are absolutely necessary for a consistent formulation of electromagnetism even in an
oriented spacetime manifold and mainly if the spacetime is a bare manifold devoid of metric and affine
structure8. Eventually, the main argument of the majority of those authors is that the current 3-form must
be impair for otherwise its integral over an oriented 3-chain (which gives the value of the charge in that
region) does depend on the orientation chosen, a conclusion that those authors consider an absurd.

Moreover it must be said that the presentation of the differential equations of electromagnetism using the
Clifford bundle formalism [7] uses only pair differential forms and, if the charge argument is indeed correct,
it seems to imply that the Clifford bundle cannot be used to describe electromagnetism or any other physical
theory. So, we must discuss in a thoughtful way the claims of [19–24, 27–33, 38] and indeed, the main
purpose of the present paper is to do that by showing that in a relativistic spacetime9 the electromagnetic
theory10 can be rigorously presented with all fields involved being pair form fields. Of course, a presentation
of electromagnetism in a oriented (even if bare) spacetime using appropriate pair and impair form fields
is also correct, but as it will become clear below it seems to be nothing more than a simply option, not a
necessity. Moreover, we show that contrary to a first expectation, the formulation of electromagnetism in
the Clifford bundle [7] of (pair) form fields is automatically compatible with each one of those mentioned
formulations of the theory, i.e., starting from Maxwell equations formulated as a single equation in the
Clifford bundle, we can show that from that equation we can either obtain as a result of a straightforward
mathematical choice two equations involving only pair forms or two equations such that one uses pair
forms and the other impair forms.

This paper is organized as follows: in Sect. 2 we introduce the nature of the spacetime manifold used
in the formulation of relativistic physical theories and recall Maxwell equations formulated with pair dif-
ferential forms on Minkowski spacetime, calling the reader’s attention to the fact that Maxwell equations
describe only one aspect of electromagnetism, which is a theory describing the interaction of the electro-
magnetic field with charged particles (see specially Sect. 6). Moreover, we emphasize that although only
the manifold structure of M is enough for the writing of Maxwell equations, the remaining objects which
defines the Minkowski spacetime structure play a fundamental role in the theory, as showed on several

4 We will give an alternative equivalent definition below.
5 It must be said that in de Rham’s discussion of cohomology, impair forms have disappeared. In [6], this question is suitably

studied by the investigation of the Grassmann and Clifford algebras over Peano spaces, introducing their respective associated
extended algebras, and exploring these concepts also from the counterspace viewpoint. It was shown that the de Rham cochain,
generated by the codifferential operator related to the regressive product, is composed by a sequence of exterior algebra
homogeneous subspaces that are subsequently pair and impair.

6 Some authors as e.g., [19] avoid the use of pair and impair forms by using instead (pair) multivector fields and pair forms.
7 Almost all the authors in [8–18] even do not mention impair differential forms in their books and the few that mention those

objects only say that they are necessary for a consistent integration theory on non oriented manifolds.
8 The idea of developing electromagnetism using a manifold devoid of metric and affine structure is very old and appears in [34]

and [35]. A complete set of references on the subject up to 1960 is given in [36]. Such an approach to electromagnetism
has also been used in [37] and now is advocated by many authors, see specially [23] (and of course, the arXiv) for modern
references.

9 The concept of a relativistic spacetime as used in this paper is recalled in Sect. 2.
10 This includes even the case of regions involving a non dispersive medium that can be described by effective Lorentzian

spacetimes [30].
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times in different sections of the paper. Section 3 is dedicated to the definition of the pair volume 4-form
and the pair Hodge star operator. Section 4 defines impair differential forms and in particular emphasizes
the difference between the pair and the impair volume forms and the pair and impair Hodge star operators.
Section 4 also discusses the fundamentals of electromagnetism in a medium and proves that, contrary to
some claims [39], the recent discovery that the constitutive extensor of Cr2O3 has a term proportional to
the Levi-Civita symbol in no way implies that this discovery is the proof that impair forms must be used in
the formulation of electromagnetism. Section 5 recalls the Clifford bundle formulation of Maxwell equa-
tion11, proving as already mentioned that it is compatible with those two formulations (only pair and pair
and impair) of that equations. Section 6 shows how the force density that is postulated in the presentation
of electromagnetism in [23] is directly contained in Maxwell equation. Moreover we show in Sect. 6 that
the equation (which contains the force density) describing the interaction of the charged particles with the
field automatically knocks down the charge argument mentioned above. In Sect. 7 using the Pauli algebra
bundle we present the engineering formulation of electromagnetism in terms of the electric and magnetic
fields E and B and emphasize that in this formulation which necessarily needs a choice of a volume ele-
ment we do not need to introduce the so called axial vector fields and moreover that the circulation of the
magnetic field around a (very long) wire conducting current is conventional. Finally in Sect. 8 we present
our concluding remarks.

2 Nature of the spacetime manifold and of the electromagnetic field

Every physical theory starts by modeling the arena (spacetime) where physical phenomena are supposed
to happen. It is a well known fact that when gravitation can be neglected, the motion (classical or quantum)
of particles and fields occurs in an arena which is modeled by Minkowski spacetime, i.e., a structure
(M, g, D, τg, ↑), where M is a 4-dimensional manifold diffeomorphic to R

4, g ∈ secT 2
0M is a Lorentzian

metric, D is the Levi-Civita connection of g (i.e., T(D) = 0, where T is the torsion tensor associated to
the connectionD), R(D) is the curvature tensor associated withD, τg ∈ secΛ4T ∗M is the metric volume
element, i.e., a pair12 4-form defining a spacetime orientation and ↑ denotes time orientation13.

Classical electromagnetism according to Feynman is the theory which describes the interaction of ob-
jects called charged particles and the electromagnetic field F ∈ secΛ2T ∗M called field strength. For
the purposes of this paper a charged particle is described by a triple (m, q, σ), where (conventionally)
m ∈ R

+ is the mass parameter and based on experimental facts q (the charge) is a non null integral mul-
tiple of an elementary charge denoted |e|. It is extremely important to keep in mind for the objectives of
the present paper that the sign of q to be attributed to any charge depends on a convention, which will
be scrutinized latter (Remark 17 and Sect. 4.3). Moreover, σ : R→M is timelike curve pointing to the
future14. We parametrize σ in such a way that g(σ∗, σ∗) = 1 and define a 1-form field over σ, denoted by
v = g(σ∗). Given a finite collection of particles (m(i), q(i), σ(i)), i = 1, 2, . . . , n, we define the current for
the i-particle as the 1-form field J (i) = q(i) v(i) over σ. The total current of the system is given by

J =
∑

i
J (i) (1)

11 No misprint here. To know why look at Eq. (59).
12 See below for the definition of pair and impair forms. We emphasize here that the association of an orientation to a pair form

is the one used , e.g., in [40].
13 More details may be found, e.g. in [7, 42].
14 This being the reason why we suppose that spacetime is time orientable.

c© 2010 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim www.ann-phys.org



Ann. Phys. (Berlin) 19, No. 1 – 2 (2010) 9

which support are the set of timelike lines ∪i σ(i). If we introduce a global coordinate chart for M with
coordinates {xμ} in the Einstein-Lorentz-Poincaré gauge15 then we can write

J =
∑

i
J (i)
μ γμ, (2)

J (i)
μ = ημνq

(i)

∫
δ(4)(xβ − xβ ◦ σ(i)(s(i)))

dxν ◦ σ(i)(s(i))
ds(i)

ds(i), (3)

with s(i) being the proper time along σ(i). Before going on we must say that if the density of particles is
very large we may eventually approximate J by a continuous section of Λ1T ∗M or at least by a de Rham
current [3]. It is an empirical fact that F is closed, i.e., dF = 0 and moreover16, J =�

τg
J ∈ secΛ3T ∗M

is exact, i.e., J = −dG for G ∈ secΛ3T ∗M , called the excitation field. Those empirical observations are
written as

dF = 0, dG = −J, (4)

and known as Maxwell equations.

Remark 1. Before we proceed it must be said that if we forget the fact that the carriers of charges
are particles and simply suppose that experimentally all we have is a J ∈ secΛ3T ∗M that is conserved
(i.e., dJ = 0), then supposing that the manifold where J lives is star-shaped, we have dG = −J. Using
moreover the fact that dF = 0 (meaning that magnetic monopoles do not exist) it is a mathematical
fact that the system of differential equations given by Eq. (4) does need for its writing only the structure
of the base manifold structure M , i.e., it does not need the additional objects (g, D, τg, ↑) entering the
structure of Minkowski spacetime17. However, electromagnetism is not only Maxwell equations, we must
yet specify the way that two currents J(1),J(1) ∈ sec Λ1T ∗M interact. And to do this we shall need to use
the additional structure, as we shall see.

To proceed with our presentation of electromagnetism we must recall that as it is well known the metric
tensor can be used to give a Clifford bundle structure to ΛT ∗M = ⊕4

p=0ΛT
∗M , which will be called (for

reasons to be explained below) the pair bundle of differential forms. The Clifford bundle of nonhomoge-
neous differential forms is denoted by18 C�(M, g), where g ∈ secT 0

2M denotes the metric of the cotangent
bundle, such that for any arbitrary basis {eμ} of TU ⊆ TM and dual basis {θμ} of T ∗U ⊆ T ∗M
(U are open sets in M ), θμ ∈ sec Λ1T ∗U ⊆ sec ΛT ∗M ↪→ sec C�(M, g), we have g = gμνθ

μ ⊗ θν ,
g = gμνeμ ⊗ eν and gμνgνλ = δλμ.

Remark 2. We recall that any section of ΛrT ∗M is said to be a r-graded form field (or r-form for
short). Sometimes it is said to be of even or odd grade, depending on whether r is even or odd. This
classification is not to be confused to the concept of de Rham pair and impair forms, to be introduced
below.

15 Given a Minkowski spacetime structure, global coordinates {xμ} for M � R
4 are said to be in the Einstein-Lorentz-Poincaré

gauge (ELPG) if and only if the following conditions hold: g = ημνdxμ ⊗ dxν , D ∂
∂xμ

∂
∂xν = 0. Of course, as well known,

there exists an infinity of coordinate functions related by Poincaré transformations satisfying these conditions. We shall write
in what follows γμ := dxμ and γμ = ημνγν .

16 The symbol �
τg

means the pair Hodge dual operator, and its definition is given below.

17 This has been originally observed by Cartan in [2].
18 Details on the construction of C�(M, g) may be found, e.g., in [7].
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2.1 Energy-momentum 1-form and energy-momentum tensor for the system
of charged particles

For use in Sect. 6 we define now the energy-momentum 1-form for a charged particle (m(i), q(i), σ(i)) as
the 1-form field p(i) over σ(i) given by

p(i) = m(i)v(i), (5)

and it is obvious that p(i) · p(i) = (m(i))2. In an inertial frame19 I = ∂
∂x0 associated to the coordinates

{xμ} forM in ELPG at time x0 = t, the particles will occupy different spacetime points (t, x1
(i)(t), x

2
(i)(t),

x3
(i)(t)). We can define the total momentum of the particles at time t only if it is licit to sum distinct 1-

forms at different tangent spaces of M . This, of course requires an absolute parallelism and here is then a
place where the flat connection D that was introduced in the structure of Minkowski spacetime becomes
necessary. It permits us to write the total momentum of the particles at time t as

P (t) =
∑

i
p(i)(t), (6)

a necessary concept needed in order to be possible to talk about energy-momentum conservation for the
system of particles and the electromagnetic field (see Sect. 6). Besides the momentum 1-form of the parti-
cles we shall need also to introduce the energy-momentum 1-forms Tα ∈ sec Λ1T ∗M for the system of
charged particles. We have:

Tα =Tαβγβ ,

Tαβ =
∑

i
ηαμ

∫
p(i)
μ (s)

d

ds
xβ ◦ σ(i)(s(i))δ4(xκ − xκ ◦ σ(i)(s(i)))ds(i). (7)

3 The pair metric volume element τg

First introduce an arbitrary g-orthonormal basis {eα} for TM and corresponding dual basis {θα} for
T ∗M . Then, g(eα, eβ) = ηαβ and g(θα,θβ) = θα · θβ = ηαβ and θα(eβ) = δαβ , where the matrix
with entries ηαβ and the matrix with entries ημν are equal to the diagonal matrix diag(1,−1,−1,−1). We
define a pair metric volume20 τg ∈ secΛ4T ∗M by

τg := θ0 ∧ θ1 ∧ θ2 ∧ θ3 (8)

Remark 1 An orientation for M as we already said above is a free choice of an arbitrary volume
element.21 Before proceeding let us introduce arbitrary coordinates {xμ} for U ⊂ M and {x′μ} for U ′ ⊂
M , U ∩ U ′ 
= ∅ such that

θα = hαμdx
μ, θα = h′αμ dx

′μ. (9)

Let h and h′ the matrices with entries hαμ and h′αμ . Then, e.g.,

det(gαβ) = (deth)2 det(ηαβ), (10)

19 An inertial frame is defined as a time like vector field I such that g(I, I) = 1 and DI = 0. More details if need may be found,
e.g., at [7].

20 The impair volume elements is defined in Sect. 4.1.
21 Of course, an arbitrary manifold M , even if orientable, when equipped with an arbitrary Lorentzian metric field g does not in

general admit a global g-orthonormal cotetrad field, so, in this case the introduction of τg is a little more complicated [9, 11].
However, all manifolds M part of a Lorentzian spacetime structure that admits spinor fields have a global g-orthonormal
cotetrad field. This is a result from a famous theorem due to Geroch [43].
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and
√∣∣det(gαβ)

∣∣ = |deth|
√∣∣det(ηαβ)

∣∣ = |deth| (11)

The expression of τg in the bases {dxμ} and {dx′μ} are respectively

τg =
1
4!
τi0...i3dx

i0 ∧ · · · ∧ dxi3 = τ0123dx
0 ∧ · · · ∧ dx3

=
deth
|deth|

√∣∣det(gαβ)
∣∣dx0 ∧ · · · ∧ dx3, (12)

and

τg =
1
4!
τ ′j0...j3dx

′j0 ∧ · · · ∧ dx′j3 = τ ′0123dx
′0 ∧ · · · ∧ dx′3. (13)

Now writing L
ip
jp

= ∂xip

∂x′jp , detL = det( ∂x
i

∂x′j ) we have (remember that τi0...i3 = ε0123i0...i3τ0123 =

ε0123i0...i3
deth
|deth|

√∣∣det(gij)
∣∣)

τ ′j0...j3 = Li0j0 . . . L
i3
j3
τi0...i3 . (14)

Also, since

√∣∣∣det(g′ij)
∣∣∣ = |detΛ|

√∣∣det(gij)
∣∣, we end with

τ ′0123 = detLτ0123 := Δ−1τ0123 (15)

=
deth
|deth|

detL
|detL|

√∣∣∣det(g′ij)
∣∣∣. (16)

Remark 3. We want to emphasize here that with the choice deth
|deth| = +1, the coordinate expression for

τg in the basis {dxμ} becomes the one appearing in almost all textbooks, i.e.,
√∣∣det(gij)

∣∣dx0 ∧ · · · ∧ dx3.

However the coordinate expression for τg in the basis {dx′μ} is

√∣∣∣det(g′ij)
∣∣∣dx′0 ∧ · · · ∧ dx′3 only if

detL
|detL| = +1. The omission of the factor detL

|detL| in the textbook presentation of τg is the source of a big
confusion and eventually responsible for a statement saying that the volume element must be an impair
4-form. An impair volume element is an object different from τg and will be introduced in Sect. 4.1.

Comparing Eq. (15) to Eq. (8.1) of Schouten’s book [4] we see the reason why a quantity that “trans-
forms” like in Eq. (15) is called a scalar-Δ-density of weight 1. Despite being fan of Schouten’s book, the
authors think that such a nomenclature may induce confusion, unless expressed in a coordinate free way
as, e.g., done in [40, 41, 46].

3.1 The pair Hodge star operator

A pair metric volume element τg permits us to define an isomorphism between ΛpT ∗M ↪→ C�(M, g) and
Λ4−pT ∗M ↪→ C�(M, g), given by

�
τg

: ΛpT ∗M → Λ4−pT ∗M

Ap �→ �
τg
Ap := Ãpτg (17)

www.ann-phys.org c© 2010 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim



12 R. da Rocha and W. A. Rodrigues Jr.: Pair and impair form fields, and electromagnetism

In Eq. (17) Ãpτg means the Clifford product between the Clifford fields Ãp and τg, and Ãp is the re-
verse22 of Ap. Let {xμ} be global coordinates in the ELPG and {γμ = dxμ} an orthonormal cobasis, i.e.,
g(γμ, γν) := γμ · γν = ημν .

In this case we can write τg = γ5 = γ0 ∧ γ1 ∧ γ2 ∧ γ3 = γ0γ1γ2γ3 and the calculation of the action of
the Hodge dual operator on a p-form becomes an elementary algebraic operation23. We also suppose that
τg = γ5 defines a positive orientation (also called right handed orientation), and it is trivial to verify that24

τgτg = τg · τg = (γ5)2 = −1 (18)

Before we proceed, recall that we can show trivially that the definition given by Eq. (17) is equivalent to
the standard one, i.e., for any Ap,Bp ∈ secΛpT ∗M , it follows that

Bp ∧ �
τg
Ap = (Bp · Ap)τg (19)

Remark 4. As defined, the object A′
p = �

τg
Ap is a legitimate pair form, although it depends, as it is

obvious from Eq. (17), of the chosen orientation τg. Some authors (like e.g., [23]) assert that the Hodge
star operator maps a pair form into an impair one (see the definition of impair forms below). What does
this statement mean given our definition that the (pair) Hodge star operator changes an even grade form
to an odd grade form (and vice versa)? It means that an impair Hodge operator that maps a pair form into
an impair one can also be defined and of course is a concept different from the one just introduced. The
impair Hodge operator will be presented and discussed in Sect. 4.1. To avoid any possible confusion on
this issue, let us bethink that there may two different Hodge operators associated with the same metric g.
Indeed, given the metric g and a (pair) metric volume 4-form τ ′g 
= τg with τ ′2g = −1 we may define another
Hodge star operator

�
τ ′

g

: ΛpT ∗M → Λ4−pT ∗M

Ap �→ �
τ ′

g

Ap := Ãpτ
′
g (20)

Now, there are only two possibilities for τ ′g . Either τ ′g = τg or τ ′g = −τg. In the second case we say that τ ′g
defines a negative or left handed orientation. It is obvious that in this case we have

�
τ ′

g

Ap := − �
τg
Ap, (21)

but we insist: both �
τ ′

g

Ap and �
τg
Ap are legitimate pair 4-forms.

Following Feynman, we take the view that only the field F is fundamental and that the charge carriers
move in the vacuum (Lorentz vacuum) even when they are inside a medium, where they scatter from time
to time the particles constituting the medium. It is then necessary, first of all to find the relation between
G and F for the vacuum. It is an empirical fact that once a spacetime orientation τg is fixed (by arbitrary
choice) we get a correct description of electromagnetic phenomena in vacuum25 by taking

G := �
τg
F (22)

22 See, e.g., [7] for details.
23 Of course, our statement is true only for someone that knows a little bit of Clifford algebra, as it is supposed to be the case of

a reader of the present article.
24 The Clifford product in this paper is represented by juxtaposition of symbols following the convention of [7].
25 Of course, any formulation of electrodynamics in a medium must take as true the equations in vacuum and the properties of

matter which are supposed to be described (due to the obvious difficulties with the many body problem) by an approximate
phenomenological theory derived, e.g., from quantum mechanics. This is the point of view of Feynman [47] which we endorse.

c© 2010 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim www.ann-phys.org
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Remark 5. Until now, we have only used pair forms in our formulation of electromagnetism, but we
call the reader’s attention to the fact that if we choose the opposite spacetime orientation τ ′g and �

τ ′
g

, we must

put

G = − �
τ ′

g

F, (23)

if we want to preserve the non homogeneous Maxwell equation dG = −J.

4 Impair forms

The definition of the Hodge dual leaves it clear that different orientations (i.e., different pair volume ele-
ment forms differing by a sign) produce duals – in the Hodge’s sense – differing by a sign. This elementary
fact is sometimes confused with the concept of impair forms introduced by de Rham [3]. From a historical
point of view it must be recalled that de Rham pair and impair forms are only a modern reformulation of
objects already introduced by Weyl [5] and then by Schouten [4].

Let {eμ} and {e′μ} be arbitrary bases for sections of TU ⊂ TM and TU ′ ⊂ TM (U ′ ∩ U 
= ∅) and
{θμ} and {θ′μ} be respectively bases for secΛ1T ∗U ⊂ secΛT ∗M ↪→ sec C�(M, g) and sec Λ1T ∗U ′ ⊂
secΛT ∗M ↪→ sec C�(M, g) which are respectively dual to the bases {eμ} and {e′μ}. Let ω = 1

4!ωi0...i3dx
i0

∧ · · · ∧ dxi3 and ω′ = 1
4!ω

′
i0...i3

dx′i0 ∧ · · · ∧ dx′i3 and let τg be the orientation of the spacetime, which we
recall is a free choice.

Definition 6. We say that the ordered coframe basis {θμ}, {θ′μ} (or simply ω, ω′) are positive or right-
handed oriented relative to τg if

o(ω) := −ω · τg > 0, o(ω′) = −ω′ · τg > 0, (24)

and if

o(ω) := −ω · τg < 0, o(ω′) = −ω′ · τg < 0. (25)

the bases are said to be negative or left-handed oriented.

Remark 7. It is very important not to confuse the concept of orientation of a coframe basis given by
o(ω) with the spacetime orientation given by τg. But of course, the orientation of a coframe changes if it is
referred to another volume element with different orientation.

Remark 8. Also, suppose that a given manifoldM is non orientable. In this case we define the relative
orientation of the basis {θμ}, {θ′μ} on U ∩ U ′ by saying that they have the same orientation if ω · ω′ > 0
and opposite orientation if ω ·ω′ < 0. In the following the symbol o(ω) will be used according to Definition
6 if we are referring to an orientable manifold. In the eventual case where we referred to a non oriented
manifold that even does not carry a metric field, o(ω′) will mean the relative orientation of a given basis
{θ′μ} in U ∩ U ′ relative to {θμ}, given by sign of Jacobian determinant detL/ |detL|.

Definition 9. An impair p-form field
�
Ap is an equivalence class of pairs (

�
A

ω

p , o(ω)), where
�
A

ω

p ∈
secΛpT ∗M a pair form – called the representative of

�
Ap on the basis {θμ} – is given by

�
A

ω

p = o(ω)
1
p!

�
Ai1...ipθ

i1 ∧ · · · ∧ θip (26)

Given the pairs (
�
A

ω

p , o(ω)) and (
�
A

ω′

p , o(ω′)) where
�
A

ω′

p ∈ secΛpT ∗M is given by

�
A

ω′

p = o(ω′)
1
p!

�
A′
j1...ip θ́

j1 ∧ · · · ∧ θ́jp (27)
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we say that they are equivalent if one of the two cases holds:

(a) if o(ω) = o(ω′),
�
A

ω

p =
�
A

ω′

p

(b) if o(ω) = −o(ω′),
�
A

ω

p = −
�
A

ω′

p

(28)

Remark 10. Let {eμ = ∂
∂xμ } and {e′μ = ∂

∂x′μ } be coordinate bases where {xμ} are global coordinates
in the Einstein Lorentz-Poincaré gauge forU ⊂M and {xμ} coordinates forU ′ ⊂M . Now the orientation
of {γμ = dxμ} being taken as positive, if we simply write (as did de Rham)

�
A

ω

p =
1
p!

�
Ai1...ipdx

i1 ∧ · · · ∧ dxip , (29)

�
A

ω′

p =
1
p!

�
Áj1...jpdx

′j1 ∧ · · · ∧ dx′jp , (30)

then we must have

�
Áj1...jp =

detL
|detL|L

i1
j1
. . . L

ip
jp

�
Ai1..ip, (31)

with detL = det( ∂xi

∂x′j ). Eq. (31) is the definition of an impair form given by de Rham [3] (see also [4]).

Remark 11. It is very important to note that, since according to Definition 6 an impair p-form is an

equivalence class of pairs (
�
A

ω

p , o(ω)) where each
�
A

ω

p is a pair p−form and o(ω) denotes the basis orienta-
tion. Recall that if spacetime is oriented and we define o(ω) by Eqs. (24) and (25), then it depends on the
spacetime orientation τg, and it follows that each pair p-form representative of an impair p-form depends
also on the choice of the spacetime orientation. Indeed, if we change the spacetime orientation from τg to
τ ′g = −τg the orientation of the coframe {θμ} changes to o′(ω) = −ω · τ ′g = −o(ω).

We denote the bundle of impair p-forms by Λp− T
∗M and the exterior bundle Λ−T ∗M = ⊕4

p=0Λ
p
−T

∗M .

Let
�
Ap ∈ secΛp−T

∗M denote that the impair p-form field
�
Ap is a section of Λp−T

∗M
Remark 12. We can easily show that Λ−T ∗M as defined above is isomorphic to L(M) ⊗ ΛT ∗M

(whose sections are line-bundle-valued multiforms on M ). We write [40, 41]

Λp−T
∗M � L(M)⊗ ΛT ∗M, (32)

where L(M) is the so called orientation line bundle of M , a vector bundle with typical fiber R and
where the transition functions are defined as follows. Let {(Uα, ϕα)}be a coordinate covering of M
with transition functions given by tαβ = ϕα ◦ ϕ−1

β . Then, the transition functions of L(M) are given
by J(tαβ)/

∣∣J(tαβ)
∣∣, where J(tαβ) means the Jacobian of matrix of the partial derivatives of tαβ . Under

the above conditions we can write (with the usual abuse of notation) for a given
�
A ∈ sec(L(M)⊗ΛT ∗M),

�
A = e(α) ⊗A(α) = e(β) ⊗A(β) (33)

This formula leaves it clear once again that to start any game with impair forms we must, once we choose a
given chart (Uα, ϕα), to give by convention an orientation e(α) for it and next we must choose a pair form

A(α) = A or its negative, i.e., A(α) = −A to build
�
A. This choice depends of course on the applications

we have in mind.
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4.1 The impair volume element

The impair 4-form
�
τ g ∈ sec Λ4

−T
∗M whose representative in an arbitrary basis {dxμ} supposed positive

is given by

�
τ g =

1
4!

�
τ ioi1i2i3dx

i1 ∧ · · · ∧ dxip =
�
τ0123dx

0 ∧ · · · ∧ dx3

=
√∣∣det(gij)

∣∣dx0 ∧ · · · ∧ dx3, (34)

is sometimes called (see, e.g., [48]) the pseudo volume element26. Now, the representative of this impair
form in the basis {dx′μ} is according to the definition just given

�
τ
′
g =

1
4!

�
τ
′
ioi1i2i3dx

′i1 ∧ · · · ∧ dx′ip =
�
τ
′
0123dx

′0 ∧ · · · ∧ dx′3

=
√∣∣∣det(g′ij)

∣∣∣dx′0 ∧ · · · ∧ dx′3, (35)

where we used that

√∣∣∣det(g′ij)
∣∣∣ = |detΛ|

√∣∣det(gij)
∣∣ and Eq. (31), i.e.,

�
τ ′0123 = |detL| �τ0123. (36)

Note that Eq. (36) is different from Eq. (15) which defines the transformation rule for the components of a
pair volume element.

We recall also that given a chart (U,ϕ) of the atlas of M , the integral of an impair n-form
�
τ g on a

compact region R ⊂ U ⊂M is according to de Rham’s definition (with R =ϕ(R)) given by

∫

R

�
τ g :=

∫

R

�
τ0123dx

0dx1dx2dx3, (37)

and as a result of Eq. (31) we have in the chart (U ′, ϕ′), R ⊂ U ′ and with R′=ϕ′(R),
∫

R

�
τ
′
g =

∫

R′
|detL|�τ0123dx

′0dx′1dx′2dx′3

=
∫

R

�
τ0123dx

0dx1dx2dx3, (38)

which corresponds to the classical formula for variables change in a multiple integration. Thus the integral
of an impair n-form on a n-dimensional manifold is independent of the orientation of R. This is not the
case if we try to integrate a pair n-form. We briefly recall de Rham’s theory [3] of how to integrate pair
and impair p-forms living on an n-dimensional manifoldM .

Remark 13. Suppose we assign the natural orientation to a ‘rectangle’Up ⊂ R
p by τ = dx1∧· · ·∧dxp

(where {xi} are Cartesian coordinates for R
p). It is now a classical result due to de Rham that it is always

possible to integrate a pair p-form α ∈ secΛpT ∗M over an inner oriented p-chain, i.e., a parametrized

26 Here it becomes obvious what we said in Remark 12. We want of course, that the volume of a compact region U ⊂ M be a

positive number. This implies that we must choose as elements in the trivialization of L(M)⊗ΛT ∗M , 1⊗
√∣∣det(gij)

∣∣dx0∧
· · · ∧ dx3 or (−1) ⊗ (−

√∣∣det(gij)
∣∣dx0 ∧ · · · ∧ dx3) which is simply written as

�
τ g =

√∣∣det(gij)
∣∣dx0 ∧ · · · ∧ dx3.
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submanifold ψ : Up → M endowed with an inner orientation [3, 9, 11, 48] ō(Up). Indeed, if {ui} are
arbitrary coordinates covering ψ(Up), we have by definition

∫

(ψ(Ur), ō(Ur))

α =
∫

(Ur , ō(Ur))

ψ∗α

:= ō(U r)
∫

(Ur , ō(Ur))

ψ∗α
(

∂

∂u1
, . . . ,

∂

∂ur

)
du1 . . . dur, (39)

where ō(U r) = signdet( ∂u
i

∂xj ). Of course, if we assign a different orientation ō′(U r) = −ō(U r) to Up we
have

∫

(ψ(Ur),−ō′(Ur))

α = −
∫

(ψ(Ur), ō(Ur))

α. (40)

It is now opportune to bethink that any impair n-form is always integrable over any compact n-dimensional

manifold M , be it orientable or not. However, it is not always possible to integrate an impair r-form
�
α on

a n-dimensional manifold over a parametrized submanifold ψ : U r →M unless ψ is an outer orientable
map, i.e., if we can associate an orientation to M on ψ(U r). In general it may be not be possible to do

that, and thus, we cannot integrate
�
α over an orientable p-dimensional submanifold S ⊂ ψ(U r), unless S

is endowed with an outer or transverse orientation, i.e., if at any point of x ∈ V , TxM = TxS ⊕N (with
any n ∈ N being transverse to S, i.e., n /∈ TxS) then each transversal N can be oriented continuously
as a function of x ∈ V . Let (x1, . . . , xn) be coordinates covering U ⊂ M such that S ∩ U is defined by
xι = f(x1, . . . , xr), ι = r + 1, . . . , n. Of, course the vector fields ∂

∂xι , ι = r + 1, . . . , n, defined in U ,
are transverse to S. Given an orientation for S ∩ U , there always exists a set of vector fields {e1, . . . , er}
in T (S ∩ U) that are positively oriented there, which can be extended to all TU by trivially keeping
their components constant when moving out of V . In this way an outer orientation can be defined in U
by saying that {e1, . . . , er, ∂

∂xr+1 , . . . ,
∂
∂xn } defines, let us say, the positive orientation on U . Then, if

�
η ∈ sec ΛrT ∗U , the pullback form i∗

�
η on S ∩ U (where of course i : S → M is the embedding of

the submanifold S on M ) is well defined, and can be integrated [48]. Finally, recall that the orientations
defined by o(ω) and ō(U r) are obviously related27, and we do not need further explanation.

Remark 14. It is essential to recall that Λ−T ∗M is not closed under the operation of exterior multipli-
cation and indeed to have a closed algebra (with that product) we need to take into account that the exterior
multiplication of forms of the same parity is always a pair form and the exterior multiplication of forms
of different parities is always an impair form. Also, the scalar product of forms of the same parity gives
a pair 0-form and the scalar product of forms of different parities gives an impair 0-form. Moreover, the
differential operator d preserves the parity of forms.

Remark 15. If we insist in using pair and impair forms for formulating the differential equations of
motion of a given theory, e.g., in a formulation of electromagnetism in an oriented spacetime (something
that at this point the reader must be convinced that it is not necessary at all, as it clear from the presentation
given above) we need to introduce an impair Hodge star operator.

4.2 The impair Hodge star operator

Definition 16. Let
�
τ g ∈ sec Λ4−T ∗M be an impair volume form. The impair Hodge star operator is the

map

�
�
τ g

: ΛpT ∗M → Λ4−p
− T ∗M, (41)

27 See, e.g., Sect. 4.2.6 of [7].
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�
�
τ g

: Λp− → Λ4−pT ∗M (42)

such that for any Ap ∈ sec ΛpT ∗M and
�
Bp ∈ secΛp−T

∗M , we have

�
�
τ g

Ap := Ãp
�
τ
ω

g ,

�
�
τ g

�
Bp :=

�
B̃p

ω
�
τ
ω

g . (43)

Note that in Eq. (43) the Clifford product for the representatives of the impair forms is well defined
(since according to Definition 9 each representative is an even form). Given the existence of impair and
pair forms, many authors, e.g., [29–32, 48] advocate that even in an orientable manifold the formulation
of electromagnetism must necessarily use besides the pair field strength F ∈ secΛ2T ∗M an impair exact

3-form
�
J ∈ secΛ3

−T
∗M , which then defines the excitation field as an impair 2-form

�
G ∈ sec Λ3

−T
∗M .

We have thus for the vacuum situation

dF = 0, d
�
G = −

�
J,

�
G = �

�
τg

F. (44)

Remark 17. Authors [29–32, 48] (since the classical presentation of [37]) offers as the main argument

for the necessity of using an impair
�
J ∈ secΛ3−T ∗M in electromagnetism the following statement (which

takes into account the Remark 13): “the value of the charge

Q =
∫

S

�
J (45)

contained in a compact spacelike hypersurface S ⊂ M must be independent of the (external) orientation

of S”28 and indeed, taking into account that
�
J = �

�
τg

J , where J is given by Eq. (2) we must have

∫

S

�
J =

∑
i
q(i) (46)

However, it is our view that the above argument is not a solid one. First, there is no empirical evidence
that any spacelike surface S ⊂ M where a real current is integrated does not possess an inner orientation
that may be made consistent with the orientation of M . Thus, empirical evidence asserts that we may
restrict ourself to only positively oriented charts (see also Sect. 4.3). But, even if we do not want to restrict

28 Once we use impair forms, following [48] we may say that charge is a scalar. However, take care, in, e.g., [29] charge is said
to be a pseudo-scalar. This apparent confusion comes out because in [29] it is discussed the properties of charge and of other
electromagnetic quantities under an active parity operation and time reversal operators interpreted as appropriate mappings
p :M → M and t :M → M , where M � R

4 is the manifold entering in the structure of Minkowski spacetime. In that case

we can show, e.g., that if
�
J is an impair 2-form than the pullback form

�
J

′
= p∗�J = −

�
J and thus if Q =

∫ �
J it follows

that
∫ �

J

′
= −Q, and this according to [29] justifies calling charge a pseudo-scalar. As we see a confusion of tongues are

also present in our subject. We are going to discuss more details of this particular issue in another publication.
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ourselves to the use of positively oriented charts we must not forget that to perform the integral
∫
S

�
J using

a chart (U,ϕ), S ⊂ U with coordinates {xμ} we must choose an orientation recall Remark 13) for that

chart and pick a specific choice for the pair form representing
�
J. Suppose we make the convention that

the orientation of dx0 ∧ dx1 ∧ dx2 ∧ dx3 is positive. At our disposal there are J and −J. Which one to

choose? The answer is obvious, we choose J, for in this case we will have
∫
S

�
J =

∑
i
q(i). This means

that the attribution of the charge parameters to particles need in order to define the current depends on a
convention, the one described above.

What happens if we represent the current by a pair form J ∈ sec Λ3T ∗M? In this case the integral
∫

S

J, (47)

does depend on the orientation of the chart used for its calculation. Suppose that as in the case of the
integration of the impair form we use a chart (U,ϕ), S ⊂ U with coordinates {xμ}. Which orientation
should we give to dx0 ∧ dx1 ∧ dx2 ∧ dx3? The answer is obvious. We must choose an orientation (the
positive one) such that

∫

S

J =
∑

i
q(i). (48)

So, in both cases (use of impair or pair current forms) to start the evaluation process we need to make a
convention in order to fix the charge parameters of the charges that enter the definition of current such that
Eq. (46) and Eq. (48) are true.

Now, what happens if someone using pair forms decides to calculate
∫
S
J using a chart with a different

orientation than the one previously used to fix the charge parameters of the particles? The answer is that he
will find that the value of the integral given by Eq. (47) will be now−

∑
i
q(i)? Is this a puzzle? Of course

not, the value is negative because he is using a different convention than the previous one.
What we should ask is that if this break of convention changes the physics of electromagnetic phe-

nomena? No, what happens is only that what was called a positive charge will now be called a negative
charge and what was called a negative charge will now be called a positive one. No empirical fact will
change, only some names. This is so because this change of names does not change any prediction of
the theory concerning the motion of charged particles that besides the coupling parameter q also carries
a coupling parameter m. We shall explicitly demonstrate this statement in Sect. 6 after we introduce the
Clifford bundle formulation of electromagnetism. Here we emphasize again: the sign of a charge can be
given meaning only by making it to interact with a charge that has been defined by convention as being
positive (or negative)29.

4.3 Teaching aliens what is right hand and what is left hand

The previous considerations of Remark 17 are valid only if the universe we live does not have regions
composed of what we here called antimatter. Indeed, let us recall one of Feynman’s stories (at page 103
of [49]) on the subject. Suppose we are in contact with some alien species, but only by the exchange,
say of radio signals. Any intelligible communication needs a language and we suppose to build one doing
something similar to the one proposed in the SETI program, starting with telling aliens what we mean by
prime numbers and progressing to pictures, physics, and chemistry information. The concept of distance
may be grasped by the aliens, e.g., by telling then how tall we are (in the mean), by expressing such number
in mutually understood wavelengths of light. They can use that information to tell us how tall they are. We

29 This point is well discussed in [38, 44] where the author uses an interesting homological approach in the formulation of the
electromagnetic laws.
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can also teach the aliens the concept of a man lifetime by expressing such number by the number of ticks of
a light-frequency clock. To make agreement of some physical conventions and also to explain some social
procedures among men (e.g., the fact that we shake hands when we meet, by extending our right hand) we
need to explain them what is a right hand. How to do that?

As well known, until 1957 we could not answer that question. But, after the discover of the experiments
showing parity violation in that year, we can explain to the aliens what the right hand is by asking them
to repeat the original experiment done by Wu [50] et al with 60Co, but in such a way that they must
turn their apparatus (including the magnetic field generator in use) until the electrons come out in the
downward direction, which we may define as the one of their local gravity pull. In such a situation the
rotating nucleus will be with their spins up, i.e., rotating in the anti-clockwise direction as seen from the
top. Before someone says that the aliens cannot see the 60Co rotating we describe how we can teach them to
amplify this anti-clockwise rotation (as seen from the top) in order that it becomes macroscopically visible.
Indeed, all they need is to follow the following instructions. (A) Take a spherical conductor of radius a in
electrostatic equilibrium with an uniform superficial charge density with total charge Q (i.e., charge as the
ones carried by the atomic nucleus of the 60Co) and which is magnetized with its dipole magnetic moment
of modulus ς oriented in the same direction (the ẑ-direction) of the magnetic moment of the 60Co nucleus
in his repetition of Wu’s experiment. Such charged magnet has electromagnetic angular momentum stored
in its electromagnetic field given by Lem = 2

9 ςQa
2ẑ30. (B) The aliens are next instructed to discharge

the magnet (suspended from the roof with an insulator) through the south pole. This makes the magnet to
rotate anti-clockwise as seen from the top, in order to conserve the total angular momentum of field plus
matter. Indeed a simple calculation [52,53] shows that the mechanical angular momentum acquired by the
sphere once completely discharged is31 Lmec = 2

9 ςQa
2ẑ.

Of course, Feynman cautions us (page 107 of [49]) that after lots of communication if we finally can go
into space and meet the aliens counterpart, if it happens that their leader extends its left hand to shake, stop
immediately because that is proof that he is made of antimatter. This, of course, is because Wu’s parity
violation experiment constructed of antimatter would give the opposite result.

Feynman’s story is important for the objectives of this paper because it shows that the charge argument
is indeed a very week one. To fix the signal of the charge parameters that label particles and to describe
their currents, we need to start with a convention, we need a local orientation, we need to know what a
right hand is.32

4.4 Electromagnetism in a medium

Classical electromagnetism in a general medium is a very complicated subject since admitting with Feyn-
man that the only the fundamental physical fields F and the current J generated by the particles carriers
must enter the game are we immediately involved in an almost intractable many body system. However, it
seems empirical fact that the equations

dF = 0, dG = −J,

G = χ(F ) (49)

30 This stored angular momentum in static electric plus magnetic field has been experimentally verified in [51].
31 This result is obtained once we neglect the magnetic field associated with the discharging current and displacement current

associated with the collapsing electric field, something justifiable if the current is small. If the current is not small some angular
momentum will be carried by the radiation field, but of course at the end of the discharging process the sphere will be rotating.

32 More recently Elitzur and Shinitzky [54] showed how to teach aliens what is right and what is left using the space asymmetry
of molecules (L and D amino acids). However, to their method Feynman’s caution also applies.
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or

dF = 0, d
�
G = −

�
J,

�
G =

�
χ(F ) (50)

describes essentially all macroscopic electromagnetic phenomena on any medium contained in a world

tube in U ⊂ M . In those equations κ and
�
κ are multiform functions [55, 56] of the multiform variable F ,

i.e., for each x ∈ U ⊂M we have

χ|x : Λ2T ∗
xM → Λ2T ∗

xM, (51a)

�
χ

∣∣∣∣
x

: ΛpT ∗
xM → Λ2

−T
∗
xM. (51b)

Consider, e.g., Eq. (51b). The multiform function
�
χ is phenomenologically described, e.g., using coordi-

nates in the ELPG by [14, 57]

�
G

μν

=
1
2

(
�
χ
μνρσ

Fρσ +
�
ς
μνρσιζ

FρσFιζ + · · ·
)
. (52)

A medium for which
�
ς
μνρσιζ


= 0 is called nonlinear. For what follows we restrict our considerations only

to linear media. In that case the constitutive multiform function
�
χ is a (2, 2)-extensor field [55,56] and we

have the decomposition [23]

�
χ
μνρσ

= (1)�χ
μνρσ

+ (2)�χ
μνρσ

+
�
a (3)εμνρσ , (53)

where (1)�χ
μνρσ

is a trace free symmetric part (with 20 independent components), (2)�χ
μνρσ

is the antisym-
metric part (with 15 independent components) and εμνρσ is the Levi-Civita symbol (with only 1 indepen-

dent component). Finally,
�
a is an impair 0-form field (also called a pseudo-scalar function) called the

axion field. It has been a conjecture (called Post conjecture [30]) that
�
a must be null for any medium.

However, recently it has been found that for Cr2O3,
�
a 
= 0. In [39] it is claimed that this fact even proves

that we must use impair forms in the description of electromagnetism. However, those authors forget the
following observation that can be found at page 22 of de Rham’s book:

“Si la variété V est orientée, c’ est-à-dire si elle est orientable et si l”on a choisi une orientation ε, à
toute forme impaire α est associée une forme paire εα. Par la suite, dans le cas d’une varieté orientable, en
choissant une foi pour toutes une orientation, il serait possible d’éviter l’emploi des formes impaires. Mais
pour les variétés non orientables, ce concept est réellement utile et naturel.”

Now, for de Rham, an orientation ε is an impair 0-form field (i.e., an axion field) defined in the manifold
M (that in his book is called V )33. So, all that the authors of [39] need to do in order to have only pair

forms in their formulation of the electromagnetism of Cr2O3 is to multiply their impair objects by
�
a . So,

contrary to popular believe the existence of an axion field does not imply that spacetime is non oriented.
Quite the contrary is what is true.

33 The reader can easily convince himself that this definition is equivalent to the one given in terms of an impair and a pair

volume 4-forms
�
τ g and τ g. Indeed, take ε =

�
τ g · τg.
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For some media where (2)�χ
μνρσ

= 0, and
�
a = 0 we even find that the constitutive extensor may be

described by [30]

�
χ
λνσκ

=
√

detg(gλσgνκ − gλκgνσ) (54)

where gλσgλν = δσν and gμν are the components of an effective metric field g = gμνdxμ ⊗ dxν for M . A
particular medium with such characteristic is the vacuum in the presence of a gravitational field, but here
we do not want to go deeply on this issue.

Remark 18. Until to this point the complete Minkowski spacetime structure (M, g, D, τg, ↑) did not
enter our formulation of electromagnetism. So, let us remark, first of all that from the point of view of an
experimental physicist the parallelism rule defined by D is essential, since it is this parallel transport rule
that permits him(her), e.g., to make to parallel filamentary currents and find their interaction behavior (as
long ago did Ampere).

From a mathematical point of view, the connection D enter in our formulation of electromagnetism
through the introduction of the Dirac operator acting on sections of the Clifford bundle C�(M, g).

Remark 19. Also, for media where the constitutive extensor can be put in the form given by Eq. (54)
we can give an intrinsic presentation of electromagnetism using the Clifford bundle formalism by intro-
ducing an effective Lorentzian spacetime (M,g,∇, τg, ↑) where now,∇ denotes the non-flat34 Levi-Civita
connection of g, an effective Lorentzian metric determined by the constitutive tensor of that effective
spacetime.

Remark 20. Before ending this section we have an important observation yet, concerning the metric
free formulation of electromagnetism as presented, e.g., in [23]. There, it is admitted thatM is an oriented
connected, non compact, paracompact Hausdorff space. The authors say that a manifold with those char-
acteristics always permits a codimension-1 foliation35, a statement that is true [58]. However without any
additional structure we cannot see how to foliate spacetime M as time × space (R×S), because we do
not know a prior how to choose the dimension that represents time. In [23] the authors quickly introduce
a global vector field n transverse to the folia, and the 3-dimensional manifold S of the foliation is defined
by a manifold function σ : M → R such that σ(x) = constant and n�dσ = 0. It seems clear for us that
n and Ω = dσ are nothing more than the universal vector field and the universal 1-form field defining the
structure of absolute space and absolute time in the structure of Newtonian theory when that theory is for-
mulated as a spacetime theory (for details, see [59]). Those observations can be translated in simple words:
contrary to some claims only the bare structure of M is not enough for a formulation of electromagnetic
theory as a physical theory.

5 The Clifford bundle formulation of electromagnetism

In a medium described by an effective Lorentzian spacetime (M,g,∇, τg, ↑) we may present the equations
of electromagnetic theory as a single equation using the Clifford bundle C�(M, g) of pair differential forms.
We recall [7] that in the Clifford bundle formalism the so called Dirac operator36 ∂ acting on sections of
C�(M, g) is given by

∂ = ∂∧+ ∂� (55)

34 This term only means that the Riemann tensor R(∇) �= 0.
35 It admits also a 1-dimension foliation.
36 Please, do not confound the Dirac operator to the spin-Dirac operator which acts on sections of a spinor bundle. See details,

e.g., in [7]. Here we recall that in an arbitrary basis {eμ} for TU ⊂ TM , and {θμ} for T ∗U ⊂ T ∗M ⊂ C�(M, g), the
operator is given by ∂ :=θμ∇eμ . Take notice that g = gμνeμ ⊗ eν if g = gμνdxμ ⊗ dxν , with gμνgαν = δμ

α.
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It can be shown (see, e.g., [7]) that for a Levi-Civita connection we have ∂∧ =d and ∂� =− δ, where δ is
the Hodge coderivative operator, such that for any Ap ∈ sec ΛpT ∗M ↪→ C�(M, g) its action is given by:

δAp = (−1)p �
τg

−1 d �
τg
Ap. (56)

We also have that:

−δAp = ∂�Ap = θμ�(∇eμAp),

dAp = ∂∧Ap = θμ ∧ (∇eμAp), (57)

and those expressions permit the simplification of many calculations. Recalling that G = �
τg
F we get that

dG = −J can be written defining J = �
τg

−1J ∈ secΛ1T ∗M ↪→ C�(M, g) as δF = −J . Indeed, we have,

d �
τg
F = −J,

�
τg

−1d �
τg
F = − �

τg

−1 J,

δF = −J
Then, the two equations dF = 0 and δF = −J can be summed if we suppose (as it is licit to do in the
Clifford bundle C�(M, g)) that F,G ∈ sec Λ2T ∗M ↪→ C�(M, g) and J ∈ secΛ3T ∗M ↪→ C�(M, g) and
we get Maxwell equation37

∂F = J. (58)

Remark 21. We now show that Eq. (58) can also be obtained directly from the de Rham formulation
of electromagnetism that uses pair and impair forms. Indeed, all that is need is to verify that the formula

d
�
G = −

�
J in Eq. (44) – where

�
G = �

�
τg

F – can be written as δF = −J . Indeed, we have

d
�
G = −

�
J,

d �
�
τg

F = −
�
J,

�
�
τg

−1d �
�
τg

F = − �
�
τg

−1
�
J,

and it is trivial to verify the formulas: �
�
τg

−1d �
�
τg

F = δF and �
�
τg

−1
�
J = �

τg

−1J = J ∈ secΛ1T ∗M . We

conclude that the Clifford bundle formulation of electromagnetism given by Maxwell equation (Eq. (44))
is general enough to permit the two formulations of electromagnetism given above.

We are now ready to complete the formulation of electrodynamics as a physical theory. We restrict
our presentation here in the case where the existence of the gravitational field must be ignored. As such
our formulation will use the Minkowski spacetime structure introduced above and the Clifford bundle
C�(M, g).

37 No misprint here! Parodying Thirring [18] that said that the equations dF = 0 and δF = 0 were the 20th century presentation
of Maxwell equations, we say that the single equation ∂F = J is the 21th century presentation of Maxwell equations.
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6 The energy-momentum 1-forms of the electromagnetic
and the matter fields

We start from Maxwell equation (with J the current of charged particles introduced by Eq. (2))

∂F = J (59)

where in what follows, ∂ =θαDeα = γμ ∂
∂xμ is the Dirac operator written with a general pair of dual basis

{eα} and {θα} for TU ⊂ TM and T ∗U ⊂ T ∗M and with the basis { ∂
∂xμ } and {γμ = dxμ} for TM and

T �M , with {xμ} coordinates in the Einstein-Lorentz-Poincaré gauge. Given Eq. (59) its reverse is

F̃
←−
∂ = J (60)

where F̃
←−
∂ := (Deα F̃ )θα = ( ∂

∂xμ F̃ )γμ. Multiplying Eq. (59) on the left by F̃ and Eq. (60) on the right
by F and summing the resulting equations we get

1
2
[F̃ (∂F ) + (F̃

←−
∂ )F ] =

1
2
(F̃ J + JF ), (61)

Now, let n = nαγα ∈ secΛ1T ∗M ↪→ C�(M, g) and ∂n = γα ∂
∂nα acting on multiform functions of the

multiform variable n. Consider moreover the extensor field 38 T (n) = 1
2 F̃ nF . Now, observe that if we

apply γα · ∂n to the multiform function f(n) = ∂n
∂xα we get39

γα · ∂n ∂n

∂xα
= ηαμ

∂

∂nμ
(
∂

∂xα
nβγβ)

= ηαμ
∂

∂xα
(δβμγβ) = 0. (62)

Using Eq. (62) we can write the first member of Eq. (61) as

F̃ γλ
∂F

∂xλ
+
∂F̃

∂xλ
γλF

= γλ · ∂n
(
F̃ n

∂F

∂xλ
+ F̃

∂n

∂xλ
F +

∂F̃

∂xλ
nF

)

= γλ · ∂n ∂

∂xλ
(F̃ nF ) (63)

=
∂

∂xλ
(F̃ γλF )

On the other hand the second member of Eq. (61) is just −J�F . So, we have

∂

∂xα
Tα = J�F, (64)

with the Tα ∈ sec Λ1T ∗M ↪→ C�(M, g) given by40

Tα =
1
2
FγαF̃ (65)

38 An extensor field T : Λ1T ∗M → Λ1T ∗M , n 	→ T (n) is a linear multiform function of the form field n.
39 See details on the derivation of multiform functions in [60].
40 An equation equivalent to Eq. (65) has been discovered by M. Riesz [61].
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being the pair energy-momentum 1-forms of the electromagnetic field. Indeed, a simple calculation shows
that

Tαβ = Tα · γβ = ηαμFμλF
λβ +

1
4
ηαβFμνF

μν , (66)

a well known formula. Now, we contract Eq. (64) on the left with γα getting

∂�Tα = γα�(J�F ) (67)

Now41,

γα�(J�F ) = (γα ∧ J)�F = −(γα ∧ J) · F
= −F · (γα ∧ J) = −(γα�F ) · J, (68)

and Eq. (67) becomes (taking into account that ∂�Tα = −δTα)

δTα = (γα�F ) · J (69)

Defining fα ∈ secΛ4T ∗M as the pair density of force by

fα = [(γα�F ) · J ]τg, (70)

where τg is a pair metric volume element, we obtain (the equivalent expressions)

fα = [(γα�F ) · J)]τg = �
τg

[(γα�F )�J ] = (γα�F ) ∧ �
τg
J

= (γα�F ) ∧ J, (71)

where, in particular, the last one is the pair density of force.

Remark 22. Note that we could return to Eq. (22) and get an impair density of force simply by replacing

the pair volume element τg by an impair volume element
�
τ g, i.e., defining

�
f α := [(γα�F ) · J ]

�
τ g. (72)

Such a formula was postulated in the presentation of electromagnetism in [23] However, as we just saw,
that postulate for the coupling of the field F with the current J is not necessary in our approach, since that
force density is already contained in Maxwell equation (Eq. (59)). We now write Eq. (69) as

d �
τg
Tα = (γα�F ) ∧ �

τg
J, (73)

or

d �
�
τ g

Tα = (γα�F ) ∧ �
�
τ g

J (74)

and both, of course, in components reads

∂νT
αν = JνF

να (75)

41 The sequence of identities in Eq. (68) may be found in Sect. 2.4.2 of [7].
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6.1 Total energy-momentum conservation and the knockdown of the charge argument

Eq. (75) asserts that the energy momentum tensor of the electromagnetic field is not conserved. We expect
that the total energy-momentum of the field and the charged particles is conserved since there is not a
single experiment in Physics contradicting it, and so without much ado, recalling the definition of the pair
energy-momentum 1-forms of the charged matter, the Tα given by Eq. (7) we postulated that:

δTα + δTα = 0, (76)

which may be written as:

(γα�F ) ∧ �
τg
J = −d �

τg
Tα. (77)

or

(γα�F ) ∧ �
�
τ g

J = −d �
�
τ g

Tα. (78)

Eq. (77) is of course the Lorentz force law, and all objects in it are pair forms. On the other hand Eq. (78)
is also an expression of the Lorentz force law and there are objects on it that are pair and others that are
impair forms. Both equations give in our opinion the correct description of physical phenomena. However
let us analyze here Eq. (77), since it permits us to knockdown again the charge argument [29–32,48] which

says that the density of current must be an impair 3-form, i.e., that we must use
�
J = �

�
τ g

J ∈ secΛ3T ∗M

to calculate without ambiguity the charge in a certain spacelike region, say S ∈M . To see this, recall that
the total energy-momentum 1-form of matter in U at time x0 = t in an inertial reference frame I = ∂

∂x0 is

P (t) =
(∫

S

�
τg

Tα

)
γα. (79)

Now, if we change the orientation of S two things happen. What was called electric charge q(i) =∫

S

�
τg
J (i)

∣∣∣∣
σ(i)

of the i-particle changes into −q(i). F changes into −F (despite the fact that it is a pair

form) because of the formula used to calculate it (see Appendix). If we are interested in the motion of only
a single small particle modeled by a thin world tube in an external field F , when integrating Eq. (79) we get

that what we originally called energy at time t, E(i)(t) =
∫

S

�
τg
T0

∣∣∣∣
σ(i)

of i-particle changes into−E(i)(t).

This sign changes in Eq. (79) is compensated by the sign change that occurs in
∫

S

(γα�F ) ∧ �
�
τ g

J(i) and

it follows that the prediction for the trajectory of that particle does not change if we change the orienta-
tion of S. And since trajectories of particles are all what are experimentally detected, it follows that the
formulation of electrodynamics with only pair forms is compatible with the experimental facts42.

Remark 23. If we take into account that d �
τg
F = − �

τg
J we have that

Q =
∫

(S,o)

�
τg
J = −

∫

(S,o)

d �
τg
F = −

∫

(∂S,o)

�
τg
F (80)

42 We quote that our analysis of the sign to be atrtributed to charges and masses is in agreement to the one presented in [44], where
(original in Italian) we can read (pp. 187): ”... thus the electric charge is associated to volumes with external orientation and
change sign when the external orientation is changed”. Also, at pp. 201, we read: ”...Thus the mass is associated to volumes
with external orientation....and must change sign when the external orientation is changed”. On this issue see also [45] (pp.
324).
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where we have used Stokes theorem and where the orientations used for a spacelike hypersurface S
(dimU = 3) and ∂S (dim ∂S = 2) are internal orientations. Now, as observed above if we change

the internal orientation of U (without changing the orientation of M ) the value of Q =
∫

(S,o)

�
τg
J changes

sign i.e., we get Q′ = −Q =
∫

(S,−o)
�
τg
J . A change in the internal orientation of S (i.e., the internal

orientation of TS) implies in a change of its external orientation since those orientations43 are related by
(oi(M) ≡ oi(TM))

oi(TM) = oe(TM/TS)⊗ oi(TS), (81)

where the external orientation of S is defined as the internal orientation of the quotient space TM/TS.
Since T∂S is a subspace of TS we have that [62]

oi(M) = oe(TM/TS)⊗ oi(TS) = oe(TM/TS)⊗ oe(TS/T∂S)⊗ oi(T∂S),

which implies that the internal orientation oi(T∂S) of T∂S does not change when we change the the
internal orientation of U . This result is the one that warrants the consistence of the formalism since we
already observed that when we change the orientation of U we need to change for consistence F �→ −F
and so −

∫

(∂S,o)

�(−
τg

F ) = −Q.

7 The engineering formulation of electromagnetism
without axial vector fields

We recall (see details in [7]) that for any x ∈M , C�(T ∗
xM, gx) � R1,3 � H(2), is the so called spacetime

algebra. The even elements of R1,3 close a subalgebra called the Pauli algebra. That even subalgebra is
denoted by R

0
1,3 � R3,0 � C(2). Also, H(2) is the algebra of the 2 × 2 quaternionic matrices and C(2) is

the algebra of the 2× 2 complex matrices. There is an isomorphism R
0
1,3 � R3,0 as the reader can easily

convince himself. Choose a global orthonormal tetrad coframe {γμ}, γμ = dxμ, μ = 0, 1, 2, 3, and let
{γμ} be the reciprocal tetrad of {γμ}, i.e., γν · γμ = δμν . Now, put

σi = γiγ0, i = −γ0γ1γ2γ3 = −γ5. (82)

Observe that i commutes with bivectors and thus acts like the imaginary unity i =
√−1 in the even sub-

bundle C�0(M, g) =
⋃
x∈M C�0(T ∗

xM, gx) ↪→ C�(M, g), which may be called the Pauli bundle. Now, the
electromagnetic field is represented in C�(M, g) by F = 1

2F
μνγμ ∧ γν ∈ secΛ2T ∗M ↪→ sec C�(M, g)

with

Fμν =

⎛

⎜⎜⎜⎝

0 −E1 −E2 −E3

E1 0 −B3 B2

E2 B3 0 −B1

E3 −B2 B1 0

⎞

⎟⎟⎟⎠ , (83)

where (E1, E2, E3) and (B1, B2, B3) are the usual Cartesian components of the electric and magnetic
fields. Then, as it is easy to verify we can write

F = E + iB, (84)

with, E =
∑3
i=1 Eiσi, B =

∑3
i=1Biσi.

43 Recall that the space of internal orientations of a given manifold has only two elements {+1,−1} but it has an algebraic
structure where the product of orientations is defined in an obvious way. Besides that given to different manifolds we can form
the tensor product of their orientation spaces to obtain another orientation space. This is how Eq. (81) is obtained.
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Remark 24. Although E and B are 2-form fields in C�(M, g) they may be identified, once we fix an
inertial reference frame (i.e., fix the γ0 field) with time dependent Euclidean vector fields �E, �B and thus
we call them “ Euclidean vector fields” in C�0(M, g).

For the electric current density Je = ργ0 + J iγi we can write

γ0Je = ρ− j = ρ− J iσi. (85)

For the Dirac operator we have

γ0∂ =
∂

∂x0
+

3∑

i=1

σi∂i =
∂

∂t
+∇. (86)

Multiplying both members of Eq. (58) on the left by γ0 we obtain

γ0∂F = γ0J,

(
∂

∂t
+∇)(E + iB) = ρ− j (87)

From Eq. (87) we obtain

∂0E + i∂0B +∇ •E +∇� E + i∇ •B + i∇� B = ρ− j. (88)

In Eq. (88) for any “vector field” A ∈ C�0(M, g)(↪→ C�(M, g)),

∇ •A = σi • (∂iA),

∇� A = σi � (∂iA), (89)

with the symbols • being defined through

σi • σj =
1
2
(σiσj + σjσi) = δij ,

σi � σj =
1
2
(σiσj − σjσi). (90)

We define next the vector product of two “vector fields” C =
∑3
i=1 Ciσi and D =

∑3
i=1Diσi as the

dual (see, e.g., [7]) of the “bivector field” C �D through the formula

C×D = −i(C � D). (91)

Finally, for any “vector field” A ∈ C�0(M, g)(↪→ C�(M, g)) we define the rotational operator∇× by

∇×A = −i(∇� A). (92)

Using these concepts we obtain from Eq. (88) by equating terms with the same grades (in the Pauli
subbundle)

(a) ∇ ·E = ρ, (b) ∇×B− ∂0E = j,
(c) ∇×E + ∂0B = 0, (d) ∇ ·B = 0,

(93)

which we recognize as the system of Maxwell equations in the usual vector (engineering) notation. How-
ever, the following remark is necessary.
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Remark 25. From the above developments we see that a direct formulation of electromagnetism using
time dependent fields, which are taken as sections of the Pauli subbundle C�0(M, g), uses only vector
fields, once an orientation (say i) is fixed, thus dispensing the axial vector fields of the traditional Gibbs-
Heaviside formulation and the more sophisticated formalism of tensors and tensor densities introduced
by [37] and presented as a necessity by some other authors. Moreover, Eq. (91) leaves also clear that the
definition of the vector product depends – in each inertial frame (i.e., when we fix field γ0) – on the choice
of an orientation in the affine Euclidean rest space S [42] of that frame. It implies that if we change the
orientation of S, i.e., choose −i (instead of i) in the definition of the vector product, we need to change
B �→ −B, which means that the circulation of the magnetic field around a (very long) wire conducting
current is conventional [48].

8 Conclusions

We showed that in any relativistic spacetime (M,g, D, τg, ↑), which is necessarily an orientable and time
orientable manifold, electromagnetism can be coherently formulated using only pair form fields or pair
and impair form fields, contrary to some claims appearing in the literature. The use of pair and impair
form fields is necessary only if a non orientable manifold models our universe. However, a manifold of this
kind cannot (according to a well known result [43]) represent the spacetime of our universe, where spinor
fields live. Moreover we showed that using the Clifford bundle of (pair) forms we can give a formulation
of electromagnetism that is compatible with those two formulations using only pair form fields or pair and
impair form fields. Each one of those formulations depends only on a mathematical choice that does not
seem to imply in any observable consequence.

An eventual objection to our formulation not discussed above, appeared in [63], which claims that
the description of electromagnetism using the Clifford bundle formalism is not consistent if magnetic
monopoles exist. Now, using that formalism the generalized Maxwell equations read

∂F = J − �
τg
Jm, (94)

where J is the pair electric current 1-form field and Jm is the pair magnetic current 1-form field, and
the claim in [63] is that the Clifford bundle formalism implies that Jm = 0 Since this statement appears
from time to time it is opportune to recall here that it has been proved wrong in [7, 64], since based on a
misunderstanding that says that if the electric charges are scalars the magnetic charges must be pseudo-
scalars. It also must be said that even if magnetic monopoles do not exist, Eq. (94) is important. The
reason is the following. It can be shown that in the Clifford bundle formalism the standard Dirac equation
describing, say the interaction of an electron field to the electromagnetic field, is represented by an equation
called the the Dirac-Hestenes [65] equation which can be put in the form of Eq. (94). Indeed, the Dirac-
Hestenes equation is

∂ψ γ2γ1 +mψγ0 + qAψ = 0, (95)

where ψ is a Dirac-Hestenes spinor field [7, 66, 67], a mathematical object represented in a given inertial
frame I = ∂/∂x0 and once a spin-frame is fixed by a non homogeneous even section of the Clifford
bundle44,

ψ = S + F + τgP ∈ sec(Λ0T ∗M + Λ2T ∗M + Λ4T ∗M). (96)

It can then easily be shown substituting Eq. (96) in Eq. (95) that the Dirac-Hestenes equation can be
written in the form of Eq. (94), where the “electric” and “magnetic” like currents are non linear functionals
depending on S, F and P [7, 64].

44 More precisely, Dirac-Hestenes spinor fields are some equivalent classes of even non homogeneous differential forms. See,
[66, 67] for details.
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Two observations are yet necessary. The first one is that we are sure that an attentive reader which has
not been yet introduced to the Clifford bundle formalism may have become intrigued with our statement in
the abstract that pair forms may be used coherently besides in electromagnetism, also in any other physical
theory. We just mentioned that Dirac equation can be represented by sum of nonhomogeneous even sections
of the Clifford bundle. But, someone may still eventually ask: and what about Einstein’s gravitational
theory which is formulated with a symmetric metric field as its fundamental field? Well, gravitational
theory may also be formulated that field being represented by a set of four linearly independent 1-form
fields living on M .The details of how this is done can be found in, e.g., [7, 68, 69] and that fact seems to
give even more importance to the modern theory of differential forms which started with Cartan.

The second and last observation has to do with a possible question that may come to mind to some
reader which knows discrete electrodynamics45. Indeed, that theory, as formulated, e.g., in [38, 44, 70, 72]
with chains and cochains (as introduced in algebraic topology46) representing the observables uses two
types of orientations, internal and external, associated to two different classes of chains and cochains (pair
and impair). The introduction of those objects makes almost geometrically obvious the association of some
physical quantities to one or another class. So, is it the case that in discrete electrodynamics we finally need
to use pair and impair objects? Well, once again we have as answer that if the spacetime where the chains
and cochains of discrete electrodymanics leave is oriented, we can again (if due care is taken) associate to
each external oriented chain (cochain) an internal oriented chain (cochain) using a prescription analogous
to the one given by Eq. (81) and then work only with internal oriented objects. We loose in this case the
obvious geometrical meaning of some of the quantities, but the algebraic computations result correct if sue
care is taken. This is analogous to de Rham’s statement quoted above that in an orientable manifold (once
an orientation is chosen) to each impair form there corresponds a unique pair form.

Note added in proof

Authors of [74] said that their comment it is a reaction to our paper which is related to classical electrody-
namics. It is our opinion that we deal appropriately with all their comments (some of them, unfortunately
non appropriate), but here for the benefit of our readers it turns out necessary to repeat a crucial remark
of our paper and make (due to space limitations) only some few comments. The first and more important
is that what we show in our paper that in an oriented Lorentzian spacetime we can formulate classical
electrodynamics using only pair form fields, viewed as sections of an appropriate Clifford bundle (thus
dispensing the use of impair form fields) in a coherent way using good mathematics. This is due to the fact
quoted in our paper and first spelled by de Rham (our reference [3]):

�Si la variété V est orienté, c’est-à-dire si elle est orientable et si l’on a choisi une orientation ε,
à toute forme impaire α est associée une forme paire εα. Par la suite, dans le cas d’une varieté
orientable, en choissant une foi pour toutes une orientation, il serai possible d’éviter l’emploi
des formes impaires. Mais pour les variétés non orientables, ce concept est réellement utile et
naturel.�

Using only pair forms, of course, does not mean – contrary to what our critics think and spell – that the
resulting differential equations of our theory are not invariant under arbitrary coordinate transformations.
This is so because all differential equations in our approach are written intrinsically. However, when using
pair forms the sign of a charge resulting from the evaluation of the integral of a pair current 3-form J
depends of course, on the handiness of the coordinate chart using for performing the evaluation. The

45 Discrete Electrodynamics is part of the so called Discrete Physics formulated in a basic affine manifold and where the main
idea is to dispense the fields and the differential equations of the standard physical theories and work with (set) functions (the
cochains) whose domain is the space of chains and the whose range is some additive group, which must be chosen for each
particular theory. The interested reader should consult: http://discretephysics.dic.units.it/

46 See, specially Chapter 7 of [71].
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relevant question is: does it imply any contradiction with observed phenomena? As clearly shown in our
paper through a very careful analysis using good mathematics the answer is no.

However, our critics are not happy with our analysis and continue to insist ad nauseam that charge does
not have a screw sense and as such the electromagnetic current must be an impair (twisted) 3-form field
J because they “may want to put charge on a (non-orientable) Möbius strip ...”. Well, suppose for a while
that the Möbius strip Mö is sitting on R

3 (the rest space of an inertial frame). To eventually calculate
its charge we need to start with a 2-form surface charge density J defined on R

3. Now had our critics
read our Remark 13 they could be recalled of the fact that being J a pair or an impair 2-form we cannot
define its integral over the Möbius strip. So, we conclude that only in fiction can someone think in putting
a real physical charge distribution (made of elementary charge carriers) on a Möbius strip (it should sit on
Mö × R), and leaving this physical impossibility aside we cannot see any necessity for the use of impair
forms.

Moreover, our critics said that our statement that the Clifford bundle works only with pair forms and
could not apply to Physics if there is any real need for the use of impair forms is unsubstantiated and justify
their assertion quoting preliminary algebraic studies by Demers (their reference [33]) which deal with a
non-associative ‘Clifford like’ algebra structure involving pair and impair forms. That structure has nothing
to do with the Clifford algebra used (as fibers) in our Clifford bundle, which is an associative algebra, a
property that makes that formalism a very powerful computational tool. We recall also that as detailed in
our paper our formalism which writes ‘Maxwell equation’ (no misprint here) with pair differential forms
can be split in two different ways. The first one results in two equations using only pair forms and the
second one (after introducing an impair Hodge star operator) results in an equation using pair forms and
another one using impair forms.

However to do that it is crucial to understand that there exists two different Hodge star operators, one
pair and one impair. They are very distinct objects, often confused (as we explained in detail in our paper).
We recall that to have that fact in mind is important because without the explicit introduction of the impair
Hodge dual operator the claim of our critics (that do not even mention that object) that Maxwell equation
in the Clifford bundle splits in an equation for a pair form and one involving impair forms is simply
meaningless and indeed the calculation they present (the correct ones dealing with this issue is in our
paper) results in a set of two equations involving only pair forms, contrary to their claim. Our critics said
that statement that we get from Maxwell equation the Lorentz force law is empty because we did not define
what is F . Well, this is simply not true.

In our approach it is clear that F is taken as a physical field represented by a 2-form field living
in Minkowski spacetime and satisfying Maxwell equation, where a current 1-form J (formed from the
charged matter carriers) acts as source of F . We next find the energy-momentum 1-form fields of F
(Tα = −1/2FγαF ) and impose that the total energy-momentum tensor of the F field plus the charged
matter field is conserved. Under those well defined conditions we proved that the coupling of F with J
must be given by the Lorentz force law, which must then be used in the operational way in which those
objects must be used when one is doing Physics. It is in this sense that we said that such law need not
be postulated in classical electrodynamics, and we are sure that any attentive reader of our paper will
understand what we said and what we proved.

Acknowledgements Authors are grateful to the referee’s comments and also acknowledge the very important dis-
cussions on the subject of the paper with Professors F. W. Hehl and Y. Obukhov, even if we could not arrive (until now)
to a common viewpoint concerning some issues.
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A How to calculate F

A.1 Green’s identity for differential forms

In this sectionM is a n-dimensional differentiable manifold and g ∈ secT 2
0M is a metric onM of arbitrary

signature (p, q), with p + q = n. Moreover, we denote by g∈ secT 0
2M the metric on the cotangent

bundle such that in an arbitrary coordinate basis where g =gμνdxμ ⊗ dxν and g = gμν ∂
∂xμ ⊗ ∂

∂xν ,
it is gμνgμα = δαν . We suppose moreover that ΛT ∗M and C�(M, g) are respectively the exterior and
Clifford algebra bundles of M . Let P ∈ secΛpT ∗M ⊂ sec C�(M, g). We shall derive an integral identity
involving P , dP a δP and a Green (extensor) distribution47 Gx̆ ∈ secΛpT ∗M̆ ⊗ secΛn−pT ∗M that is a
generalization of the well known Green’s identities of classical vector calculus. This identity is crucial in
order to obtain a formula solving certain differential equations satisfied by P .

Let {θj , θj} be a pair reciprocal bases for Λ1T ∗M ↪→ C�(M, g). In what follows the notation θ̆i (θ̆i)
means that these forms are calculated at a point x̆ ∈ M̆ . Now, we introduce the Dirac extensor distribution
δx̆ ∈ sec ΛpT ∗M̆ ⊗ secΛn−pT ∗M by

∫
δx̆ ∧ P (x) = P (x̆). (97)

where δx̆ has support only at x̆. If {xi} are the coordinate of a chart of an atlas of M and if we choose
{θj = dxj , θj = gijdx

i} then we can easily verify that

δx̆ =
(−1)p(n−p)

p!
θ̆i1...ip ⊗ �θi1...ipδ(x− x̆),

δ(x− x̄) = δ(x1 − x̆1) . . . δ(xn − x̆n),

θ̆i1...ip = θ̆i1 ∧ · · · ∧ θ̆ip , θi1...ip = θi1 ∧ · · · ∧ θip , (98)

where in Eq. (98) δ(xi − x̆i), i = 1, 2, . . . , n are the usual (scalar) Dirac measures.
The Green distribution is supposed to satisfy the following differential equation

�Gx̆ = −(dδ + δd)Gx̆ = δx̆. (99)

We now prove the following identity:

δx̆ ∧ P =(−1)n+p[dGx̆ ∧ δP − δGx̆ ∧ dP ]

− d[δGx̆ ∧ P − (−1)np+p+s+1 �
τg
P ∧ �

τg
dGx̆]. (100)

We start with the product dGx̆ ∧ δP and make some transformations on it using the definition of the
Hodge coderivative and some other well known identities involving the exterior product48. We then have

dGx̆ ∧ δP =(−1)n(p+1)+s+1dGx̆ ∧ �
τg
d �
τg
P

=(−1)np+n+s+1d �
τg
P ∧ �

τg
dGx̄

47 The distribution Gx̆ is also called a p-form-valued de Rham current. Rigorously we should write P ∈
sec D′(M, ΛpT ∗M) ⊂ sec D′(M, C�(M, g)) and Gx̆ ∈ sec ΛpT ∗M̆ ⊗ sec D′(M, Λn−pT ∗M) ↪→ sec

∧p T ∗M̄ ⊗
sec D′(M, C�(M, g)) where sec D′(M, Λn−pT ∗M) is the space of the linear functionals over the sections of ΛpT ∗M of
p-forms of compact support (in the sense of its action as, e.g., in Eq. (97). M̆ is a copy of M and is there to recall that Gx̆ is
a two point distribution.

48 See, e.g., Sect. 2.4.2 of [7].
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=(−1)s+1d(�
τg
P ∧ �

τg
dGx̆)− (−1)n+pδdGx̆ ∧ P

=(−1)s+1d(�
τg
P ∧ �

τg
dGx̆) + (−1)n+p[(−δd− dδ)Gx̆ ∧ P ]

+ (−1)n+pdδGx̆ ∧ P
=(−1)s+1d(�

τg
P ∧ �

τg
dGx̆) + (−1)n+pδx̆ ∧ P + (−1)n+pd(δGx̆ ∧ P )

+ δGx̆ ∧ dP,

from where Eq. (100) follows.
Integrating both sides on the n-dimensional region U ⊂M we have49

P (x̆) =(−1)n+p

∫

U
[dGx̆ ∧ δP − δGx̆ ∧ dP ]

−
∫

∂U
δGx̆ ∧ P − (−1)n+p+s �

τg
dGx̆ ∧ �

τg
P ]. (101)

A.2 Solution of ∂F = J

We now applies the above formula for solving the equation ∂F = J in a Minkowski manifold. We start by
choosing a chart with coordinates {xμ} in the ELPG. We write as in the text γμ = dxμ and γμ = ημνγ

ν .
Then, since ∂F = J is equivalent to dF = 0 and δF = −J , we have using the retarded solution

Gs(x− x̆) =
1
2
γ̆μ1μ2 ⊗ �

τg
γμ1μ2Gs(x− x̆),

∂2Gs(x− x̆) = δ(x− x̆) (102)

where Gs is the scalar Green retarded function (see, e.g., [73]), which vanishes outside the light cone at x.
Then

F (x) = −
∫

U
dGs(x− x̆) ∧ J(x̆)−

∫

∂U

δGs(x− x̆) ∧ F (x̆) + �
τg
dGs(x− x̆) ∧ �

τg
F (x̆), (103)

and supposing that F vanishes on the boundary ∂U we end with

F (x) = −
∫

U
dG(x− x̆) ∧ J(x̆). (104)

This equation shows explicitly that F → −F when we decide to relabel the charges entering J from q(i)

to −q(i) something that as already discussed in the text happens if we calculate
∫

�
τg
J in a chart with a

different orientation than the positive one defined by γ0 ∧ γ1 ∧ γ2 ∧ γ3.

49 Analogous equation to Eq. (101) appears in Thirring’s book [18]. However take care on comparing the equations there and
here because of some (−1) signs arising due to different definitions of the Hodge coderivative.
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