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Quantizing orthodox gravity

A.Y. Shiekh

Abstract: A tentative approach is made to quantizing gravity with a modified renormalization scheme, and is illustrated

for the example of a massive scalar field with gravity.

Résumé : Une tentative est faite de quantifier la gravité en utilisant une méthode modifiée de renormalisation. Nous
P’illustrons avec un exemple impliquant un champ scalaire en présence d’un champ gravitationnel.

[Traduit par la rédaction]

1. Introduction

With quantum theory and general relativity being such good
descriptions of the world, it is somewhat paradoxical that
we have still not managed to wed the two theories [1]. Be-
fore embarking upon variations, one might question the need
to quantize gravity at all, since there is no direct experi-
mental evidence demanding the quantization of the gravi-
tational field.! However, if gravity remains classical, since
its fields are then not subject to the uncertainty principle of
quantum theory, it might be employed to make an indirect
measurement of a quantum field that would be more precise
than that permitted. This argument for quantizing gravity is
not watertight, as one might propose a gravitational coupling
to the quantum expectation value, or some other alteration to
quantum theory itself [2]. However, it does motivate one to
begin by investigating the obstacles to naive quantization of
the gravitational field.

The usual scheme of field quantization is plagued by di-
vergences, but in some special cases those infinities can be
consistently ploughed back into the theory to yield a finite
end result with a small number of arbitrary constants re-
maining; these then being obtained from experiment [3, 4].
This is the renowned scheme of renormalization, disapproved
of by some, but reasonably well-defined and yielding results
in excellent agreement with Nature. The fact that only some
theories are renormalizable has the beneficial effect of being
selective, and so predictive. Unfortunately, in the usual sense,
general relativity is not renormalizable [5].

The approach taken is to review the problem of the non-
quantizability of traditional gravity, and to see it from the
point of view of nonpredictability. Further physical input is
then suggested to restore predictability. An illustrative one-
loop calculation is then performed using the operator regu-
larization technique.

Jfo=—«/§i(

2. Traditional formulation

Orthodox quantum gravity is a perturbatively unrenormaliz-
able theory in the traditional sense, for starting from the ex-
ample of a free scalar field in a gravitational field described
by the classical Lagrangian in Euclidean space:

L=—g (R+ %gu"amav«p + % m2¢2) ¢))]

using units where 16rnG = 1, ¢ = 1; one discovers, upon
quantizing both the matter and gravitational fields, that the
counter terms do not fall back within the original Lagrangian.
Already at one loop one observes the appearance of ¢* and p*
counter terms (most easily seen by power counting), where p?
is shorthand for g*9,¢av0, and not the independent variable
of Hamiltonian mechanics. At two loops one also has such
divergences, along with the occurrence of additional counter
terms of ¢® and p® form. This continues indefinitely, and since
the total number of counter terms is then infinite in number,
their associated ambiguities destroy the predictive power of
the theory. The presence of higher derivative counter terms
further destroys the causal behaviour of the theory. The above
is the starting Lagrangian and not the classical Lagrangian
that arises from the quantum theory in the £ — O limit.

In summary, renormalizability requires that the number
of independent counter terms be finite in number and that
they do not spoil the physical behaviour of the original
theory (modification is permitted). The fact that even after
successful renormalization some factors, such as mass and
charge, are left undetermined should perhaps not be viewed
as a predictive shortcoming, since the fundamental units of
nature are relative; that is to say, the choice of reference unit
(be it mass, length, time, or charge) is always arbitrary, and
then everything else can be stated in terms of these few units.

These observations motivate the consideration of the most
general bare starting Lagrangian (in even powers of ¢ and
Po) permitted on the grounds of symmetry:
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where p(z, is shorthand for g§Yauégdvdy and Ay, g, Yo, do, by, Co, do, ... are arbitrary analytic functions. The second
line carries all the higher derivative terms.

Strictly this is formal in having neglected gauge fixing and the resulting presence of ghost particles. Syminetry now
assures us that all counter terms must fall back within this Lagrangian, and it is this that motivated the construction.
So we are led to the renormalized theory given by

1 i 1
—2M+ R+ = p? + = m2¢% + — 6*A(0?) + pPo*(0?) + Ro*Y(0?)
o \/g—( 2P+ g ) ®
+pta(p?, 0%) + Rp*b(p?, §7) + R2c(p?, 0°) + RuwRWVd(p?, ¢%) + ..

This expression has no predictive content, since there are
an infinite number of arbitrary constants, in each arbitrary
function, and in this sense the theory is not renormalized.
However, there remain physical criteria to pin down some of
these arbitrary factors.

The cosmological constant is abandoned on the grounds
of energy conservation [6], but could just as well be re-
tained. Since in general the higher derivative terms lead to
acausal behaviour, their renormalized coefficient can also be
put down to zero. This still leaves the three arbitrary analytic
functions A(¢?), w(9?), and ¥¢?) associated with the terms
¢*, p?¢* and R¢?, respectively. The last may be abandoned
on the grounds of defying the equivalence principle. To see
this, begin by considering the first term of the Taylor ex-
pansion, namely R¢?; this has the form of a mass term and
so one would be able to make a local measurement of mass
to determine the curvature, and so contradict the equivalence
principle. The same line of reasoning applies to the remaining
terms, Ry?, RS, ... etc.

This leaves us the two remaining infinite families of am-
biguities within the terms ¢*A(¢?) and p2¢62x(¢?). In the limit
of flat space in 3+ 1 dimensions this will reduce to a renor-
malized theory in the traditional sense if A(¢?) = constant,
and «(¢*) = 0. So one is led to proposing that the physical
parameters should be

A=x@®) =) =0

a(p?, 1) = b(p?, ) = c(p?, 6} = d(p?, ¢") = ... =0 @
A(9?) = A = scalar particle self-coupling constant

m = mass of the scalar particle

and so the renormalized theory of guantum gravity for a
scalar field should have the form

1 1 1

One might worry about the renomalization group pulling
the coupling constants around. This is an open point to which
I feel one of three things might happen.

(1) The couplings, set to zero at a low energy scale, might
reappear around the Plank scale. Whether the resulting theory
then makes sense is a matter for dispute.

(2) Certain extra coupling constants (beyond those already
set to zero) should be related, in order that the associated
beta functions be zero (a fixed point), ensuring that all the
couplings set to zero stay zero. This consistency condition
could be the basis of a unification scheme.

(3) Some work [7, 8] suggests that for traditionally un-

renormalized theories a consistency condition arises that fixes
the renormalization group parameter, supposedly at the Plank
scale for gravity. The idea is very tentative and not conclu-
sive.

This is a matter that needs looking at more closely.

We are left with a finite theory that has few arbitrary con-
stants. Despite the patchwork line of reasoning invoked to
arrive at this hypothesis, one might alter perspective and
simply be interested in investigating the consequences of
such a scheme for its own sake, where many of the arbi-
trary factors are set to zero, for whatever reason. At this
stage, any well-behaved, finite theory is worth investigating;
and it is unfortunate that we do not have the guiding hand
of mother nature to assist us in the guessing game.

3. Visable formulation

Having discussed this approach within the context of tradi-
tional renormalization, it is intriguing to note that the use of
analytic continuation {9-13], and the more recent method
of operator regularization [14-21]} implements the above
scheme in a much cleaner way.

In operator regularization one normally removes diver-
gences using the analytical continuation

m " (" em 6
Q" =lim — | Q7

0 den (n! ) ©
where 7 is chosen sufficiently large to eliminate the infinites.
This is explicitly illustrated later through an example. In this
limited form, it is in effect just an automated method of
minimal subtraction.

The ambiguities that were present before, but seen missing
here, are actually resident in the general operator regulariza-

tion formula
13

n
Q" = &1:1310 ac% <(1 +OoE+... + a,,e")i—! Q’“e’“’") )]
the alphas being ambiguous.

This identity is easily confirmed to be a valid rendition of
Q™ just as was the original. However, without any criterion
to fix the ambiguities, we are obliged to carry them along.
One might question having stopped the added series at €", and
this is understood when one recalls that » was chosen large
enough to cancel any divergence in Q™. The proposed
further term would then have a contribution of the form

—m " +1 " —€&—,

. d 7 -E—m

Q = }:lm ﬂis" Olp+ 1€ —! Q (8)
finite

which is strictly zero.
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Proceeding by adopting the above general operator reg-
ularization formula, one would deal with the ambiguities
(alphas) as before, setting most of the final renormalized pa-
rameters to zero on physical grounds. The method of oper-
ator regularization has the strength of explicitly maintaining
invariances, as well as being applicable to all loop levels,
unlike the original Zeta function technigue {11-13] that only
applied to one loop.

To see this method in action and its calculational sim-
ilarity to the dimensional regularization method,”? we will
walk through a simple example of a divergent one-loop
diagram of a massive scalar particle in quantum gravity. So
begin with an investigation of a massive scalar theory in its
own induced gravitational field, described by the Lagrangian
in Euclidean space:

1 1 1
.L) = —\/E (R + i g“vauq)av(b + '2— m2¢2 + Z!‘ 2\4)4) (9)

The Euclidean Feynman rules (of which there are an in-

4. Divergent one-loop diagram example
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finite number) we explicitly list, the gauged graviton prop-
agator being derived from the gravitational, R, Lagrangian
(Les Houches XXVIII) [5] in the harmonic gauge:

W o~~~ @B Suadup + 8,a8ve — Suvop (10)
P pz
Scalar propagator:
1
11
p p*+m? (1)

First interaction vertex:

,&\

1
5 (3P g -m)—pugy —qupv) (1)

etc. using units where # = 1.
Although there are an infinite number of Feynman dia-
grams, only a finite number are used to any finite loop order.

Set about a one-loop investigation with matter particles on the external legs

_ (275)4 124+ m? (+p)?

T

expand out the indices to yield

B /°° alr 1 (
o OnY Bim? (l+p)2 p

Then introduce the standard Feynman parameter “trick”

— Buvd
KV GB) (5}”(17 [—m?) — puly — lppv)

I/,
x5 (8op(p 1 =) —poly —lopp)  (13)

22 4 2mPp -1 —2m*) (14)

a;—1 ap—1
XX

i _ May+ay+...a) d(1 — 15
D{D...Df  T(anT(ay)...T(a) Jo J[ dri... dx (D;xl +...Dpx )Ptk (13)
to yield

z/“x’ d*l /‘1 d P2+ 2mp 1 - 2m? (16)
—00 21 Jo [2+m2x +p2(1 —x)+21-p(1 - x)]?
Remove divergences using the analytic continuation
dr . e .
Q- ’"—éz;r’noa—((l+als+g..+ane”)mﬂ € ”‘) (49)]
n being chosen sufficiently large to cancel the infinities. For the case in hand, n = 1 is adequate:
d :
g d —e2 (18)
Q é_lgo de((l + og)eQd }
This yields
© g4 p2 +2m?p - [ - 2m* ) 19
d" am &fw @2ny’ <€(1 OB + 21— x) + 21 p(1 — D)2 (19)
Then performmg the momentum integrations using [4]
/r°° d*®r 1 1 T A — ) 20)
(2m)2e (2 + M2 +20-pyt ~ @n)°rA) (M2 - plyi—o
/00 d*®r I 1 T(A - o) @D

oo M0 (24 MZ+20 pA

T @mer@A) Pt (a2 Zprhe

2 The choice of the symbol ¢ was not by accident.
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o @0 EM2+20 py - @ner@) PP Gz —prie T 2 (M2 = pryio

yields the finite expression

1 /1 i d [ (1 +ag) p*(1 —x)(e) +2 pre—1)
0 [

- (4n)? end de T(e+2) \ [m2x + p2x(1 — x)]¢ [m2x + p2x(1 — x)Je~!

mp*(1 —x)TE) > m*T(e) 23)
[m2x + p2x(1 — x)]¢ [m2x +p2x(1 — x)}¢
Doing the ¢ differential using

d [=(1+o0g) I'(g) T's—-1) _ ’
tim (m (a S L )) = —a+(a— by) (o~ In() (24)
yields

1

!
= @nye / dx (((2’”4 +2m2p? — p*) + p*x(4 — 3x))(In(m?x + p’x(1 — x)) — o) + 2m* + 2m’p? — p* — p*x(2m? - 2p% + p2x)) (25)
0

and finally performing the x integration gives rise to the final result in Euclidean space}

4 2 2 2 2 4 2 2
m NP m P Sp- _1p p m
= +255+—ln{l+5|-1-% = — > e 42014+ — | =
a1 ) 13 g (1) (0 () o) @
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